УДК 621.867 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОТКАЗА ПРИВОДОВ ВЕДУЩИХ ПОДВЕСОК КОНВЕЙЕРА С ПОДВЕСНОЙ ЛЕНТОЙ И РАСПРЕДЕЛЕННЫМ ПРИВОДОМ ПРИ ЗАКЛИНИВАНИИ ПРИВОДНЫХ РОЛИКОВ

Толкачев Е.Н.

ЗАО «Брянский Арсенал», Брянск, Россия

Статья посвящена актуальному вопросу, связанному с моделированием отказов приводных подвесок конвейера с подвесной лентой и распределенным приводом. Разработана математическая модель отказа индивидуальных приводов подвесок вследстиве заклинивания приводного ролика. Для базового варианта конвейера с подвесной лентой выполнено моделирование динамических характеристик.

Ключевые слова: конвейер ленточный, лента подвесная, модель математическая, отказ, подвеска, привод распределенный, заклинивание ролика.

DOI: 10.22281/2413-9920-2017-03-03-333-343

Исследование выполнено при финансовой поддержке гранта РФФИ для научных проектов, выполняемых молодыми учеными (Мой первый грант) № 16-38-00058

Конвейеры с подвесной лентой и распределенным приводом (рис. 1) относятся к многоприводным конвейерам. Кроме трассы неограниченной протяженности и широкой вариативности пространственной конфигурации такие транспортирующие установки выделяются возможностью безперегрузочного транспортирования. Отмеченные преимущества обуславливаются особенностью кинематической схемы [1-3], заключающейся в том, что удерживание и перемещение грузонесущей ленты осуществляется роликовыми подвесками, расположенными по обе стороны и свободно перемещающимися по бесконечно-замкнутым вдоль трассы направляющим качения. Приводные подвески (рис. 2), оборудованные индивидуальным мотор-редукторным приводом, не только обеспечивают минимальное натяжение конвейерной ленты [2, 4, 5], но также позволяют использовать нагруженный резерв из приводных подвесок для повышения надежности конвейера [6].

Главным достоинством конвейерного транспорта является возможность непрерывного перемещения груза. Ввиду большого количества приводных механизмов, использующихся в конструкции конвейера, и общей

- тролейный шинопровод; 4 стационарные роликоопоры; 5 приводные подвески;
 - 6 неприводные подвески; 7 лента

Рис. 2. Приводная подвеска: 1, 4 – металлоконструкции несущей и прижимной секций; 2, 7 – холостые и приводной ролики; 3 – ось; 5 – моторредуктор; 6 – подшипниковые опоры; 8 – прижимное устройство)

сложности механической системы, вопросы, связанные с возникновением отказов в работе конвейера с подвесной лентой и распределенным приводом несомненно обладают актуальностью и требуют проведения научных исследований.

В одной из ранних публикаций [7] приведена математическая модель, служащая для анализа динамических характеристик конвейера с подвесной лентой и распределенным приводом при возникновении отказов ведущих подвесок, связанных с разрывом электрической цепи. В моделируемой ситуации считалось, что вышедшие из строя приводные подвески продолжают движение на холостом ходу. Однако в случае, когда мотор-редукторный привод ведущих подвесок оборудован встроенными тормозами нормально-замкнутого типа или выходной вал привода заклинен в результате разрушения элементов составных частей редуктора или электродвигателя, то перемещение ведущей подвески сопровождается скольжением (юзом) приводного ролика. В данном случае крутящий момент на валу мотор-редуктора обращается в ноль, а сопротивление движению от силы трения качения изменяется на сопротивление от сил трения скольжения.

Для моделирования динамических процессов, протекающих при отказе приводов ведущих подвесок вследствие заклинивания приводных роликов, предлагается использовать следующую математическую модель.

Величина, характеризующая работоспособное состояние ведущей подвески подобно изложенному в [7] записывается в общем виде в виде вектор-столбца, количество элементов которого соответствует количеству приводных подвесок на одном контуре направляющих качения трассы конвейера:

$$N_{om\kappa} = (n_{a,b}),$$

где n – показатель работоспособного состояния *i*-й ведущей подвески (n=0 – приводной ролик свободно вращается, n=1 – приводной ролик заклинил); a – количество строк матрицы, равное количеству приводных подвесок (n_n); b – количество столбцов матрицы, равное единице.

Связь отказа приводных подвесок со временем выполнена путем формулирования следующего условия:

$$N_{om\kappa}(t) = \begin{cases} k_{pc}, & ecnu \quad t \le t_{om\kappa}; \\ uhave & N_{om}, \end{cases}$$

где $t_{om\kappa}$ – время наступления отказа; $k_{pc} = (1_{a,b})$ – величина, отражающая работоспособное состояние всех ведущих подвесок.

Коэффициент сопротивления движению при моделировании заклинивания приводного ролика ведущей подвески может быть записан в виде:

$$k_{conp}(t) = N_{om\kappa}(t) \cdot f_{np} + (1 - N_{om\kappa}(t)) \cdot \mu_{np} r_{np},$$

где f_{np} – коэффициент трения качения приводного ролика ведущей подвески; μ_{np} - коэффициент трения скольжения приводного ролика ведущей подвески; r_{np} – радиус приводного ролика.

Для исключения самопроизвольного перемещения механической системы под действием сил сопротивлений в обратном направлении, в математическую модель также вводится функция знака sgn(x) [8-10]. Таким образом, с учетом выше перечисленных особенностей уравнения движения приводного (рис. 3, а) и холостого (рис. 3, б) роликов [3, 11] при моделировании отказа записываются в виде следующих выражений:

$$\begin{cases} m_{ni}^{np} \ddot{x}_{i} = F_{cu_{i}} + (G_{ni} + T_{i} \sin \beta_{i}) \sin \alpha_{i} + c(x_{i-1} - 2x_{i} + x_{i+1}) + k_{i}(\dot{x}_{i-1} - 2\dot{x}_{i} + \dot{x}_{i+1}); \\ m_{ni}^{np} \ddot{y}_{i} = N_{np_{i}} - G_{nc_{i}} \cos \alpha_{i} - F_{np}; \\ J_{ni}^{np} \ddot{\phi}_{i} = N_{om\kappa}(t)_{i} \cdot M_{\kappa p_{i}} - F_{cu_{i}}r_{np} - N_{np_{i}}f_{np} \operatorname{sgn}(\dot{x}_{i}) - M_{ni}^{np} \operatorname{sgn}(\dot{x}_{i}), \\ = F_{cu}(x_{i}, x_{i+1}, x_{i-1}, \dot{x}_{i}, \dot{x}_{i+1}, \dot{x}_{i-1}, \dot{\phi}_{i}) - \operatorname{силa} \qquad \text{рез узел крепления к ленте подвесн$$

где $F_{cu_i} = F_{cu}(x_i, x_{i+1}, x_{i-1}, \dot{x}_i, \dot{x}_{i+1}, \dot{x}_{i-1}, \dot{\phi}_i)$ – сила сцепления приводного ролика ведущей подвески; G_{n_i} , G_{nc_i} – силы тяжести ведущей подвески и прижимной секций ведущей подвески; $T_i = T_i(x_i)$ – усилие, передаваемое че-

рез узел крепления к ленте подвеске со стороны ленты и транспортируемого груза; N_{np_i} – нормальная реакция опоры приводного ролика ведущей подвески; F_{np} – усилие со стороны прижимного устройства; $M_{\kappa p_i} = M_{\kappa p}(\dot{\phi}_i)$

– крутящий момент на выходном валу привода ведущей подвески; M_{ni}^{np} – приведенный момент сопротивления, приложенный к приводному ролику ведущей подвески; $m_{ni}^{np} = m_{ni}^{np}(x_i), J_{ni}^{np} = J_{ni}^{np}(x_i)$ – суммарные приведенные масса и момент инерции ведущей подвески [2, 12]; *с* – приведенная жесткость упругого элемента (ленты); k_i – коэффициент сопротивления демпфирующего элемента; \dot{x}_i , \dot{x}_{i-1} , \dot{x}_{i+1} – линейные скорости исходного, предыдущего и последующего роликов; x_i , x_{i-1} , x_{i+1} – перемещения исходного, предыдущего и последующего роликов; $\alpha_i = \alpha_i(x_i)$ – угол поворота ведущей подвески в вертикальной плоскости; $\beta_i = \beta_i(x_i)$ – угол наклона к горизонту бортов ленты [13].

Рис. 3. Расчетные схемы роликов: а – приводного; б – холостого

Движение неприводного ролика ведомой подвески описывается следующими дифференциальными отношениями:

$$\begin{cases} m_{\mu i}^{np} \ddot{x}_{i} = -F_{cu_{i}} + (G_{\mu i} + T_{i} \sin \beta_{i}) \sin \gamma_{i} + c(x_{i-1} - 2x_{i} + x_{i+1}) + k_{i}(\dot{x}_{i-1} - 2\dot{x}_{i} + \dot{x}_{i+1}) \\ m_{\mu i}^{np} \ddot{y}_{i} = N_{\mu i} - (G_{\mu i} + T_{i} \sin \beta_{i}) \cos \gamma_{i}; \\ J_{\mu i}^{np} \ddot{\phi}_{i} = F_{cu_{i}} r_{\mu} - N_{\mu i} f_{\mu p} sign(\dot{x}_{i}) - M_{mp_{i}} \operatorname{sgn}(\dot{x}_{i}) - M_{\mu i}^{np} \operatorname{sgn}(\dot{x}_{i}), \end{cases}$$

где $G_{\mu i}$ – сила тяжести ведомой подвески; N_{np_i} – нормальная реакция опоры неприводного ролика ведомой подвески; $M_{mp_i} = \mu_{\mu p_o} r_{o_i}$ – момент трения скольжения в оси неприводного ролика; $M_{\mu i}^{np}$ – приведенный момент сопротивления, приложенный к неприводному ролику ведомой подвески; $m_{\mu i}^{np} = m_{\mu i}^{np}(x_i)$, $J_{\mu i}^{np} = J_{\mu i}^{np}(x_i)$ – суммарные приведенные масса и момент инерции ведомой подвески; $\gamma_i = \gamma_i(x_i)$ – угол поворота ведомой подвески в вертикальной плоскости.

Системы уравнений движения подвесок преобразованы учетом с возможности проскальзывания только приводных роликов модели. Движение всех подвесок одного контура направляющей качения конвейера с лентой распределенным подвесной И приводом согласно математической модели описывается системой дифференциальных уравнений первого порядка, количество которых определяется числом и типом подвесок [2, 3, 11]. Общий вид системы уравнений выглядит как

$$\begin{aligned} \frac{dx_{1}}{d\tau} &= \dot{x}_{1}; \\ \frac{dx_{1}}{d\tau} &= \frac{1}{m_{1}^{sp}} \Big[F_{cu_{1}} + (G_{n_{1}} + T_{1} \sin \beta_{1}) \cdot \sin \alpha(x_{1}) + c \cdot (x_{n} - 2x_{1} + x_{2} - L_{app}) + k_{1}(\dot{x}_{n} - 2\dot{x}_{1} + \dot{x}_{2}) \Big\} \\ \frac{dq_{0}}{d\tau} &= \dot{q}_{1}; \\ \frac{dq_{0}}{d\tau} &= \dot{d}_{1}; \\ \frac{dx_{2}}{d\tau} &= \frac{1}{J_{n}^{sp}} \Big[N_{oms}(t)_{1} \cdot M_{\kappa p_{1}} - F_{cu_{1}}r_{n} - M_{n}^{sp} \cdot \operatorname{sgn}(\dot{x}_{1}) - k_{coup}(t)_{1} (G_{nc1} \cos \alpha_{1} + F_{np}) \cdot \operatorname{sgn}(\dot{x}_{1}) \Big\} \\ \frac{dx_{2}}{d\tau} &= \dot{z}_{2}; \\ \frac{dx_{2}}{d\tau} &= \frac{r_{n}}{J_{n}^{sp} + m_{n}^{sp}} \Big\{ -M_{n}^{sp} \cdot \operatorname{sgn}(\dot{x}_{2}) + r_{n} \Big[(G_{n}_{2} + T_{2} \sin \beta_{2}) \sin \gamma_{2} + c(x_{1} - 2x_{2} + x_{3}) + \\ + k_{2}(\dot{x}_{1} - 2\dot{x}_{2} + \dot{x}_{3}) \Big] - (f_{np} + \mu_{np_{0}}r_{o}) (G_{n}_{2} + T_{2} \sin \beta_{2}) \cos \gamma_{2} \cdot \operatorname{sgn}(\dot{x}_{2}) \Big\}; \\ \frac{dx_{3}}{d\tau} &= \dot{x}_{3}; \\ \frac{dx_{3}}{d\tau} &= \frac{r_{n}}{J_{n}^{sy} + m_{n}^{sy}} \Big\{ -M_{n}^{sy} \cdot \operatorname{sgn}(\dot{x}_{3}) + r_{n} \Big[(G_{n}_{3} + T_{3} \sin \beta_{3}) \sin \gamma_{3} + c(x_{2} - 2x_{3} + x_{4}) + \\ + k_{2}(\dot{x}_{2} - 2\dot{x}_{3} + \dot{x}_{4}) \Big] - (f_{np} + \mu_{np_{0}}r_{o}) (G_{n}_{3} + T_{3} \sin \beta_{3}) \cos \gamma_{3} \cdot \operatorname{sgn}(\dot{x}_{3}) \Big\}; \\ \\ \frac{dx_{i}}{d\tau} &= \frac{\pi}{m_{n}^{sp}} \Big[F_{cu_{1}} + (G_{n_{1}} + T_{i} \sin \beta_{i}) \sin \alpha_{i} + c(x_{i-1} - 2x_{i} + x_{i+1}) + k_{i}(\dot{x}_{i-1} - 2\dot{x}_{i} + \dot{x}_{i+1}) \Big\}; \\ \\ \frac{d\phi_{i}}{d\tau} &= \dot{\sigma}_{i}; \\ \\ \frac{d\dot{\alpha}_{i}}{d\tau} &= \frac{1}{J_{n}^{sp}} \Big[N_{oms}(t) \cdot M_{sp_{1}} - F_{cu_{1}}r_{n} - M_{n}^{sp} \cdot \operatorname{sgn}(\dot{x}_{i}) - k_{coup}(t)_{i}(G_{nc_{1}} \cos \alpha_{i} + F_{np}) \cdot \operatorname{sgn}(\dot{x}_{j}) \Big\}; \\ \\ \\ \frac{dx_{i}}{d\tau} &= \frac{1}{J_{n}^{sp}} \Big[N_{oms}(t) \cdot M_{sp_{1}} - F_{cu_{1}}r_{n} - M_{n}^{sp} \cdot \operatorname{sgn}(\dot{x}_{i}) - k_{coup}(t)_{i}(G_{nc_{1}} \cos \alpha_{i} + F_{np}) \cdot \operatorname{sgn}(\dot{x}_{j}) \Big\}; \\ \\ \\ \frac{d\dot{\alpha}_{i}}{d\tau} &= \frac{1}{J_{n}^{sp}} \Big[N_{oms}(t) \cdot M_{sp_{1}} - F_{cu_{1}}r_{n} - M_{n}^{sp} \cdot \operatorname{sgn}(\dot{x}_{n}) - k_{coup}(t)_{i}(G_{nc_{1}} \cos \alpha_{n} + F_{np}) \cdot \operatorname{sgn}(\dot{x}_{j}) \Big\}; \\ \\ \\ \\ \frac{dx_{i}}{d\tau} &= \frac{1}{J_{n}^{sp}} \Big[N_{oms}(t) + M_{sp_{1}} - F_{cu_{1}}r_{n} - M_{n}^{sp} \cdot \operatorname{sgn}(\dot{\alpha}_{n}) - k_{coup}(t)_{i}(G_{nc_{1}} - 2\dot{x}_{n} + \dot{x}_{n+1})$$

где

$$\begin{split} F_{cu}(x_{1}, x_{2}, x_{n}, \dot{x}_{1}, \dot{x}_{2}, \dot{x}_{n}, \dot{\phi}_{1}, t_{1}) &= \\ & \left\{ \begin{aligned} \mu_{np} \left(G_{nc1} \cos \alpha_{1} + F_{np} \right) & ecnu & \dot{\phi}_{1} r_{np} - \dot{x}_{1} > 0; \\ -\mu_{np} \left(G_{nc1} \cos \alpha_{1} + F_{np} \right) & ecnu & \dot{\phi}_{1} r_{np} - \dot{x}_{1} < 0; \\ \\ \frac{1}{J_{ni}^{np} + m_{ni}^{np} r_{np}^{2}} \left\{ m_{ni}^{np} r_{np} \left(N_{om\kappa}(t)_{1} \cdot M_{\kappa p_{1}} - M_{n1}^{np} \cdot \operatorname{sgn}(\dot{x}_{1}) - N_{np_{1}} k_{conp}(t)_{1} \cdot \operatorname{sgn}(\dot{x}_{1}) \right) - \\ & - J_{n1}^{np} \left[\left(G_{n1} + T_{1} \sin \beta_{1} \right) \sin \alpha_{1} + c \left(x_{n} - 2x_{1} + x_{2} - L_{mp} \right) + k_{1} \left(\dot{x}_{n} - 2\dot{x}_{1} + \dot{x}_{2} \right) \right] \right\}. \end{split}$$

при начальных условиях

$$x_i(\tau=0) = -h_n(i-1), \ \dot{x}_i(\tau=0) = 0, \ \varphi_i(\tau=0) = 0, \ \dot{\varphi}_i(\tau=0) = 0.$$

Для решения системы дифференциальных уравнений используется численный метод Рунге-Кутта 4-го порядка.

В качестве объекта для проведения расчета и демонстрации результатов реализации разработанной математической модели отказа ведущих подвесок при заклинивании приводных роликов ведущих подвесок принят конвейер-питатель с подвесной лентой и распределенным приводом [7, 11] (рис. 4), технические характеристики которого приведены в таблице. Моделирование динамических характеристик конвейера осуществлялось при условии наступления отказа приводной подвески № 1.

Рис. 4. Схема конфигурации трассы и расположения подвесок конвейера-питателя с подвесной лентой и распределенным приводом

Таблица

Обозна- чение	Технические характеристики	Значение	Единица измерения		
Общие характеристики					
L	Длина горизонтальной проекции конвейера	6	М		
R	Радиус концевой поворотной секции	0,5	М		
α	Угол наклона конвейера	5	град		
Q_p	Производительность расчетная	100	т/ч		
ρ	Объемная плотность транспортируемого груза	1,4	T/M ³		
φ	Угол естественного откоса груза	45	град		
V _{2p}	Скорость транспортирования расчетная	0,5	м/с		
п	Общее количество подвесок	12	ШТ.		
n_n	Количество приводных подвесок (дискретных участков)	4	ШТ.		
$n_{\partial y}$	Количество подвесок в дискретном участке	3	ШТ.		
h_n	Шаг размещения подвесок	1,26	М		

Технические характеристики конвейера-питателя

	Окончание таблиц				
Обозна- чение	Технические характеристики	Значение	Единица измерения		
Характеристики подвесок					
F _{np}	Сила прижатия ведущего ролика приводной подвески	195	Н		
с	Номинальный крутящий момент на валу привода веду- щей	5,5	Н∙м		
n _H	Номинальная скорость вращения	70,0	об/мин		
$n_{\rm r}$	Скорость вращения без нагрузки	80,0	об/мин		
$m_{_{MK}nc}$	Масса металлоконструкции прижимной секции	1,5	КГ		
m_{np}	Масса приводного ролика	2,0	КГ		
$m_{_{MP}}$	Масса мотор-редуктора	3,5	КГ		
т	Масса металлоконструкции несущей секции	7	КГ		
т _{нр}	Масса неприводного ролика	0,07	КГ		
т _{мкнп}	Масса металлоконструкции неприводной подвески	5,0	КГ		
r _{np}	Наружный радиус приводного ролика	0,07	М		
r _{hp}	Наружный радиус холостого ролика	0,025	М		
r_o	Внутренний радиус ролика	0,006	М		
f_{np}	Коэффициент трения качения (резина-сталь)	0,0077	М		
$\mu_{_{np}}$	Коэффициент трения скольжения (резина-сталь)	0,5	-		
$f_{_{HP}}$	Коэффициент трения качения (сталь-сталь)	0,001	М		
$\mu_{_{HP_o}}$	Коэффициент трения скольжения в осях	0,02	-		
k_{Π}	Количество холостых роликов в приводной подвеске	6	ШТ.		
k_H	Количество холостых роликов в неприводной подвеске	4	ШТ.		
Характеристики ленты					
В	Ширина ленты	0,4	М		
i ₀	Число прокладок ленты	2	ШТ.		
δ_1 / δ_2	Толщина верхней обкладки / нижней обкладки	3,0 / 1,0	ММ		
${\cal Y}_{\max}$	Толщина тягового каркаса ленты	2,4	ММ		
k	Коэффициент жесткости	210	кН/м		
ξ	Коэффициент затухания колебаний	0,05	-		

Моделирование выполнялось в интервале времени от 0 до 65 секунд с шагом 0,01 секунды. Время наступления отказа приводной подвески № 1 принято равным 30 с.

Результаты расчета динамических характеристик приводых подвесок при отказе ведущей подвески № 1 представлены на рис. 6-8.

В период времени от 0 до 30 с, когда конвейер работает в стационарном режиме,

перемещение приводной подвески № 1 и вращение ее ведущего ролика происходят по линейным зависимостям (рис. 5). При этом скорости имеют некоторую амплитуду колебаний: линейные в пределах 10...12%, угловые порядка 10%, изменяющюуся в зависимости от участка трассы (рис. 6).

1 – штатный режим работы; 2 – работы при наступлении отказа
Рис. 5. Изменение динамических характеристик приводного ролика от времени при наступлении отказа привода подвески № 1:
а – линейного перемещения; б – углового перемещения

1 – штатный режим работы; 2 – работы при наступлении отказа
Рис. 6. Изменение динамических характеристик приводных роликов ведущих подвесок от перемещения при наступлении отказа привода подвески № 1:
а – подвеска № 1; *б* – подвеска № 4; *в* – подвеска № 7; *г* – подвеска № 10

При наступлении отказа приводной подвески № 1 в пределах 0,5 с ее угловая скорость падает до нуля (рис. 6, а), а угловое перемещение ведущего ролика остается неизменным (рис. 5, б). После чего в интервале времени от 30 до 50 с возрастает амплитуда колебаний линейных скоростей приводных подвесок № 1, 4, 7, 10 и образуется провал значений порядка 71% (рис. 6). Необходимо отметить, что в указанный период времени приводная подвеска № 1 преодолевает криволинейный участок подъема с холостой ветви на грузовую (рис. 4, рис. 5, а).

По графикам изменения коэффициента буксования (рис. 7) видно, что после момента времени наступления отказа, коэффициент буксования приводной подвески № 1 (рис. 7, а) падает до значения -1 и остается неизменным. Значение -1 соответствует полному

скольжению (юзу), при котором угловая скорость отсутствует, а перемещение обеспечивается только в линейном направлении. В тоже время на графиках изменения коэффициента буксования остальных приводных подвесок № 4, 7, 10 (рис. 7, б-г) наблюдается 70% всплеск значений. Следовательно, в рассматриваемый период времени происходит резкое увеличение пробуксовывания ведущих роликов приводных подвесок на трассе.

Последующее перемещение приводных подвесок происходит на несколько сниженной скорости движения в пределах 7-12 % (рис. 6), пока приводная подвеска № 1 не вернется на криволинейный участок подъема с холостой ветви на грузовую (рис. 4, рис. 5, а). Затем скачки динамических характеристик подвесок повторяются аналогичным образом.

1 – штатный режим работы; 2 – работы при наступлении отказа Рис. 7. Изменение коэффициентов буксования приводных роликов ведущих подвесок от

перемещения при наступлении отказа привода подвески № 1: $a - подвеска № 1; \overline{b} - подвеска № 4; \overline{b} - подвеска № 7; \overline{c} - подвеска № 10$

а – подвеска № 1; *б* – подвеска № 4; *в* – подвеска № 7; *г* – подвеска № 10

На графиках распределения продольных усилий (рис. 8) в ленте ярко выраженных всплесков не отмечается. Силы в ленте вблизи отказавшей приводной подвески № 1 уменьшились незначительно, в то время как вблизи оставшихся приводных подвесок несколько возросли.

Представленная в статье математическая модель позволяет осуществлять расчет динамических характеристик элементов конвейера с подвесной лентой и распределенным приводом при отказе вследствие заклинивания приводных роликов ведущих подвесок. В результате проведенного анализа небольшого конвейера-питателя с подвесной лентой и распределенным приводом установлено, что отказ приводной подвески проявляется в резких провалах или всплесках скоростей движения приводных подвесок при перемещении отказавшей подвески по криволинейному участку с холостой ветви на грузовую. Ранее также отмечалось, что данный участок является наиболее сложным для преодоления приводными подвесками [2, 14]. В последующей работе планируется реализовать математические модели прочих видов отказов. После чего уже для протяженного многоприводного конвейера с подвесной лентой будет проведено исследование влияния отказов приводных подвесок на технические характеристики конвейера при различном количестве вышедших из строя подвесок, их взаимного расположения, а также размещения на трассе.

Список литературы

1. Лагерев, А.В. Конвейеры с подвесной грузонесущей лентой – инновационный вид машин непрерывного транспорта / А.В. Ла-герев, В.П. Дунаев // Справочник. Инженерный журнал, 2009. – № 10. – С. 9-14.

2. Лагерев, А.В. Проектирование и исследования конвейеров с подвесной грузонесущей лентой / А.В. Лагерев, Е.Н. Толкачев, П.В. Бословяк. – Брянск: РИО БГУ, 2016. – 303 с.

3. Lagerev, A.V. Modelling of a Vertical Loop Conveyor with Suspended Belt and Distributed Drive / A.V. Lagerev, E.N. Tolkachev, I.A. Lagerev // International Review on Modelling and Simulations. $-2016. - Vol. 9. - N \ge 4. - P. 271-279.$

4. Лагерев, А.В. Математическая модель конвейера с подвесной лентой, распределенным приводом и вертикально замкнутой трассой / А.В. Лагерев, Е.Н. Толкачев // Вестник Брянского государственного технического университета. – 2014. – № 3. – С. 44-52.

5. Лагерев, А.В. Определение рационального количества подвесок конвейера с подвесной лентой и распределенным приводом / А.В. Лагерев, Е.Н. Толкачев // Вестник СибАДИ. – 2016. – № 4. – С. 25-34.

6. Гончаров, К.А. Сравнительный анализ эффективности применения специального конвейера с подвесной лентой, распределенным приводом и вертикально замкнутой трассой / К.А. Гончаров, Е.Н. Толкачев // Достижения молодых ученых в развитии инновационных процессов в экономике, науке, образовании: материалы V междунар. научно-практ. конф. 21–23 октября 2013 г. – Брянск: БГТУ, 2013. – С. 11-13. 7. Толкачев, Е.Н. Математическая модель отказа приводов ведущих подвесок конвейера с подвесной лентой и распределенным приводом при разрыве электроцепи / Е.Н. Толкачев // Научно-технический вестник Брянского государственного университета. – 2017. – № 2. – С. 178-189. – Режим доступа: http://ntv-brgu.ru/wp-content/arhiv/2017-N2/2017-02-07.pdf.

8. Дмитриева, В.В. Разработка математической модели ленточного конвейера с двухдвигательным приводом / В.В. Дмитриева, С.В. Гершун // Горный информационноаналитический бюллетень. – 2008. – № 8. – С. 295-303.

9. Дмитриева, В.В. Моделирование пуско-тормозных режимов ленточного конвейера / В.В. Дмитриева // Горные науки и технологии. - 2014. – № 3. – С. 50-56.

10. Никитин, С.В. Динамическая модель ленточного конвейера / С.В. Никитин // Современное машиностроение. Наука и образование. – 2014. – № 4. – С. 722-731.

11. Лагерев, А.В. Моделирование режимов движения ведущих роликов приводных подвесок в математической модели конвейера с подвесной лентой и распределенным приводом / А.В. Лагерев, Е.Н. Толкачев // Научно-технический вестник Брянского государственного университета. – 2016. – № 1. – С. 55-65. – Режим доступа: http://ntvbrgu.ru/wp-content/arhiv/2016-N1/2016-01-06.pdf.

12. Толкачев, Е.Н. Определение условий работоспособности дискретного участка конвейера с подвесной лентой и распределенным приводом / Е.Н. Толкачев // Научные исследования и разработки молодых ученых: сб. материалов XII Междунар. мол. науч.-практ. конф. – Новосибирск: Издательство ЦРНС, 2016. – С. 81-89.

13. Толкачев, Е.Н. Особенности определения усилий, приложенных к подвескам конвейера с подвесной лентой и распределенным приводом, в зависимости от их пространственной конфигурации на трассе / Е.Н. Толкачев // Научно-технический вестник Брянского государственного университета. – 2015. – № 2. – С. 44-51. – Режим доступа: http://ntv-brgu.ru/wp-content/arhiv/2015-N2/2015-02-06.pdf.

14. Лагерев, А.В. Исследование движения подвесок дискретного участка конвейера с подвесной лентой, распределенным приводом и вертикально замкнутой трассой с помощью одномассовой динамической модели / А.В. Лагерев, Е.Н. Толкачев // Вестник

Брянского государственного технического университета. – 2013. – № 4. – С. 33-40.

Сведения об авторе

Толкачев Евгений Николаевич – инженер-конструктор ЗАО «Брянский Арсенал», tolkachev_en@mail.ru.

MATHEMATICAL MODEL OF FAILURE THE DRIVES SUSPENSIONS OF THE CONVEYOR WITH SUSPENDED BELT AND DISTRIBUTED DRIVE AT JAMMING ROLLERS

Tolkachev E.N.

CJSC "Bryanskiy Arsenal", Bryansk, Russian Federation

The article is devoted to the topical issue, which is related to simulation of the failures of drives suspensions of the conveyor with suspended belt and distributed drive. A mathematical model of the failure of individual drives of suspensions due to the jamming of the rollers has been developed. Dynamic characteristics of the basic version of a conveyor with suspended belt were simulated.

Key words: conveyor belt, distributed drive, failure, jamming roller, mathematical model, suspended belt, suspension. **DOI:** 10.22281/2413-9920-2017-03-03-333-343

The study was performed under financial support of RFBR grant for the scientific projects carried out by young scientists (My first grant) No. 16-38-00058

References

1. Lagerev A.V., Dunaev V.P. Conveyors with suspension carrying belt – new type of continuous transport mashines. *Inzhenerniy zhurnal. Spravochnik*, 2009, No.10, pp. 9-14. (In Russian)

2. Lagerev A.V., Tolkachev E.N., Boslovjak P.V. *Proektirovanie i issledovaniya konveyerov s podvesnoy gruzonesushchey lentoy* [Design and research of the hanging ribbon]. Bryansk: RIO BGU, 2016. 303 p. (In Russian)

3. Lagerev A.V., Tolkachev E.N. Modelling of a Vertical Loop Conveyor with Suspended Belt and Distributed Drive. International Review on Modelling and Simulations, 2016, Vol. 9, No. 4, pp. 271-279. (In Russian)

4. Lagerev A.V., Tolkachev E.N. Mathematical model of a special conveyor with suspended belt and distributed drive. *Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta*, 2014, No.3, pp. 44-52. (In Russian) 5. Lagerev A.V., Tolkachev E.N. Determination of rational number suspensions of conveyor with suspended belt and distributed drive. *Vestnik SibADI*, 2016, No. 5. pp. 25-34. (In Russian)

6. Goncharov K.A., Tolkachev E.N. Comparative analysis of the efficiency of using a special conveyor with suspended belt and distributed drive // Dostizheniya molodykh uchenykh v razvitii innovatsionnykh protsessov v ekonomike, nauke, obrazovanii: materialy V mezhdunarodnoy nauchno-prakticheskoy konferentsii. Bryansk, BGTU, 2013. pp. 11-13. (In Russian)

7. Tolkachev E.N. Mathematical model of failure the drives suspensions of the conveyor with suspended belt and distributed drive at break in the electric chain. *Nauchnotekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta*, 2017, No.2, pp. 178-189. Available at: http://ntv-brgu.ru/wp-content/arhiv/ 2017-N2/2017-02-07.pdf. (In Russian) 8. Dmitrieva V.V., Gershun S.V. Development of a mathematical model of a belt conveyor with a two-motor drive. *Gornyy informatsionno–analiticheskiy byulleten*, 2008, No. 8, pp. 295-303. (In Russian)

9. Dmitrieva V.V. Modeling of starting-brake modes of the belt conveyor. *Gornye nauki i tekhnologii*, 2014, No. 3, pp. 50-56. (In Russian)

10. Nikitin S.V. Dynamic model of belt conveyor. *Sovremennoe mashinostroenie. Nauka i obrazovanie*, 2014, No. 4, pp.722-731. (In Russian)

11. Lagerev A.V., Tolkachev E.N. Simulation Modes of Movement the Drive Rollers of Suspension of Conveyor with Suspended Belt and Distributed Drive. *Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta*, 2016, No. 1, pp. 55-65. Available at: http://ntv-brgu.ru/wp-content/arhiv/2016-N1/2016-01-06.pdf. (In Russian)

12. Tolkachev E.N. Definition of conditions working ability discrete section of the conveyor with suspended belt and distributed drive. *Nauchnye issledovanija i razrabotki molodyh uchenyh: sb. materialov XII Mezhdunar. mol.* *nauch.-prakt. konf.* [Proceedings of the XII International Youth Scientific and Practical Conference]. Novosibirsk, CRNS, 2016, pp. 81-89. (In Russian)

13. Tolkachev E.N. Specifics of determining the forces are applied to the suspensions of conveyor with suspended belt and distributed drive, depending on their spatial configuration on the route. *Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta*, 2015, No. 2, pp. 44-51. Available at: http://ntvbrgu.ru/wp-content/arhiv/2015-N2/2015-02-06.pdf. (In Russian)

14. Lagerev A.V., Tolkachev E.N. The study of the motion of suspensions of discrete section of a conveyor with suspended belt, distributed drive, and the vertically-closed track with the singlemass dinamic model. *Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta*, 2013, No.4, pp. 33–40. (In Russian)

Author' information

Evgeniy N. Tolkachev - engineerconstructor at CJSC "Bryanskiy Arsenal", *tolkachev en@mail.ru*.

> Дата публикации (Date of publication): 25.09.2017

